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We s h o w e d  p r e v i o u s l y  t h a t  t he  s u r g e  o f  l u t e i n i z i n g  h o r m o n e - r e l e a s i n g  h o r m o n e  ( L H R H )  i n d u c e d  b y  
e s t r ad io l -17 f l  (E2) in t he  f e m a l e  r a t  c a n  be  b l o c k e d  b y  a n  ~t a d r e n e r g i c  a n t a g o n i s t .  T h e  a i m  o f  t he  
p r e s e n t  s t u d y  was  to d e t e r m i n e  w h e t h e r  th i s  was  due  to a d i r e c t  a c t i o n  o f  E2 on  n o r a d r e n e r g i c  
p r o j e c t i o n s  to  L H R H  n e u r o n s  o r  w h e t h e r  it  a lso  i n v o l v e d  o t h e r  s y s t e m s  s u c h  as t he  a r c u a t e  
p r o - o p i o m e l a n o c o r t i n  ( P O M C )  n e u r o n s  w h i c h  a r e  t h o u g h t  to  i n h i b i t  L H R H  b i o s y n t h e s i s  a n d  r e l e a s e .  
T h e  e x p e r i m e n t a l  p r e p a r a t i o n  was  the  p r e p u b e r t a l  f e m a l e  r a t  in w h i c h  a n  L H R H  s u r g e  is i n d u c e d  
by  p r e g n a n t  m a r e  s e r u m  g o n a d o t r o p i n .  P r a z o s i n  was  u s e d  as a spec i f i c  ~1 a d r e n e r g i c  a n t a g o n i s t  a n d  
L H R H  a n d  P O M C  m R N A  c o n c e n t r a t i o n s  a n d  cell  n u m b e r s ,  in t he  m e d i a l  p r e o p t i c  a r e a  a n d  r o s t r a l  
a r c u a t e  nuc l eus ,  r e s p e c t i v e l y ,  w e r e  d e t e r m i n e d  b y  in s i tu  h y b r i d i z a t i o n .  P r a z o s i n  s i g n i f i c a n t l y  
r e d u c e d  t h e  t o t a l  n u m b e r  o f  L H R H  m R N A  e x p r e s s i n g  cells,  a n d  i n c r e a s e d  the  t o t a l  n u m b e r  o f  
P O M C  m R N A  e x p r e s s i n g  cel ls  a n d  the  c o n c e n t r a t i o n  o f  P O M C  m R N A  p e r  cell.  T h e s e  r e s u l t s  s u g g e s t  
t h a t  t he  i n h i b i t i o n  o f  E z - s t i m u l a t e d  L H R H  b i o s y n t h e s i s  a n d  r e l e a s e  b y  ~t a d r e n e r g i c  b l o c k a d e  m a y  
be  m e d i a t e d  b y  two  m e c h a n i s m s ;  (i) i n c r e a s e d  P O M C  s y n t h e s i s  l e a d i n g  to  i n h i b i t i o n  o f  L H R H  
n e u r o n s  a n d  (ii) d i r e c t  i n h i b i t i o n  o f  a s t i m u l a t o r y  ~1 a d r e n e r g i c / L H R H  m e c h a n i s m .  
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I N T R O D U C T I O N  

Estradiol-17fl (E2) in its positive feedback mode 
increases luteinizing hormone-releasing hormone 
( L H R H )  m R N A  in neurons of the medial pre-optic  
area (MPOA) of the rat hypothalamus [1]. Since few, 
if any, L H R H  neurons contain estrogen receptors [2], 
this action of E z is probably mediated by one or more 
interneurons and, by way of mult isynaptic pathways, 
could involve disinhibitory as well as st imulatory 
mechanisms [3]. One possible disinhibitory mechanism 
is the arcuate pro-opiomelanocort in  (POMC)  system 
which projects to L H R H  neurons [4, 5] and inhibits 
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L H R H  release [3]. Estradiol-17fl, in its positive feed- 
back mode, significantly reduces the concentrations of  
P O M C  m R N A  in the rostral arcuate nucleus [6]. This,  
together with the fact that E2 inhibits P O M C  gene 
transcription [7], suggests that E 2 stimulation of 
L H R H  synthesis and release could be mediated, in 
part,  by disinhibition of L H R H  neurons consequent on 
the inhibition of P O M C  biosynthesis. 

Starting with the pioneering findings of  Sawyer et al. 
[8], many  pharmacological data show that an ~1 adren- 
ergic mechanism plays a crucial role in generating the 
spontaneous ovulatory L H R H  and L H  surges [9, 10]. 
Central noradrenergic neurons c o n c e n t r a t e  E 2 [11] and 
project to the M P O A  [12-15]. Our  pr imary  aim, there- 
fore, was to determine whether  an (~1 adrenoreceptor  
mechanism is involved in mediat ing E2 stimulation of 
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L H R H  m R N A  synthesis as well as L H R H  release. As 
an experimental  preparat ion we used the prepubertal  
female rat treated with pregnant  mare serum gonado- 
tropin (PMSG)  which stimulates an L H R H / L H  surge 
by way of stimulating E2 release [16]. The  apparent  
similarity between the P M S G - i n d u c e d  and spon- 
taneous L H R H / L H  surge and the fact that the t iming 
of the P M S G - i n d u c e d  surge of L H R H  and L H  is more 
precise than the spontaneous L H R H / L H  surge have 
led to the extensive use of  the P M S G - t r e a t e d  pre- 
pubertal  female rat as a model for pharmacological 
studies of  the neurotransmit ter  mechanisms involved in 
the L H R H  surge (see ref. 9 for review). The  specific ~ 
adrenoreceptor  antagonist,  prazosin, administered 
intraperitoneally, intravenously or by intracerebral 
implant,  blocks the spontaneous ovulatory surge of L H  
in adult female rats [17-19]. Our  prel iminary studies 
with prazosin (1 m g k g  ~, i.p.) showed that ~ 
adrenoreceptor  blockade reduced the number  of  cells 
expressing L H R H  m R N A  [20] in P M S G - t r e a t e d  pre- 
pubertal  female rats. Prel iminary observations also 
suggested that the level of P O M C  m R N A  in arcuate 
neurons appeared to be increased in P M S G - t r e a t e d  
animals injected with prazosin. These  changes were 
associated with reduced L H  concentrations in plasma 
from trunk blood in the prazosin compared with saline- 
treated, matched control animals. The  aim of the 
present  study was to follow up these prel iminary 
observations by a formal study designed to determine 
whether  an el adrenergic mechanism is involved in 
mediat ing the effects of  E 2 on the hypothalamic levels 
of  L H R H  m R N A  and P O M C  m R N A  as assessed by 
quantitative in situ hybridization. 

M A T E R I A L S  A N D  M E T H O D S  

Animals 

T h e  experimental  paradigm was as described pre- 
viously [9, 16]. Briefly, the animals used were female 
Wistar  rats, bred in the Depar tment  of  Pharmacology,  
maintained under  controlled lighting (lights on 
0500-1900 h) and tempera ture  (22°C) and allowed free 
access to food (SDS diet RM3: Special Diet  Services, 
Wi tham,  Essex, England) and tap water. The  rats were 
injected with 2 0 I U  P M S G  (Intervet  U.K.  Ltd,  
Science Park, Mil ton Road, Cambridge,  England) at 
1100 h on day 30. On day 32 at 1200 h the animals were 
injected, i.p., with either 1 m g k g  -~ prazosin-HC1 
(RBI -Semat  Technical  (U.K.)  Ltd,  Hatfield Road, 
St Albans, Herts,  England) dissolved in 0.9% (w/v) 
saline or 0.9% (w/v) saline alone. At 1630-1700 h of the 
same day the animals were anaesthetized with sodium 
pentobarbi tone (Sagatal: R M B  Animal Health Ltd,  
Dagenham,  England) and killed by decapitation. T o  
determine the efficacy of the P M S G  treatments the 
uteri were examined and t runk blood was collected into 
heparinized tubes for L H  assay [1, 21]. 

Pairing and matching of animals and tissues 

In order to allow paired comparisons,  tissues from 
pairs of saline- and prazosin-treated animals were 
collected on the same day and matched and processed 
together as described before [1,6]. 

Tissue sectioning and blood collection 

Whole brains were removed,  frozen in iso-pentane at 
- 4 5 ' C  for 5rain  and stored at - 7 0 C .  Coronal 
(10/~m) sections were collected at - 1 8 C  and thaw 
mounted onto acid washed, poly-L-lysine coated slides. 
For L H R H  in situ hybridization histochemistry serial 
sections were collected from +8.6 to ~ 8.0 (AP co- 
ordinates of Pellegrino et al. [22]) and P O M C  in situ 
hybridization from the rostral arcuate nucleus (+ 7.0 to 
+ 6.2 [221). 

Probe preparation 

A 30-base oligonucleotide probe, complementary  to 
the sequence for the L H R H  decapeptide [23], was 
supplied by the Oswel D N A  Service (Depar tment  of 
Chemistry,  Universi ty of Edinburgh,  Edinburgh,  
Scotland). The  probe was labelled, using T 4 poly- 
nucleotide kinase (Gibco-BRL Ltd, Paisley, Strath- 
clyde, Scotland), at the 5' end with 35 S - 7 - A T P  (specific 
activity > 1000 Ci/mmol,  Du Pont (U.K.)  Ltd,  Wedge-- 
wood Way, Stevenage, Hefts,  England) [24] and 
purified through D-25 Nu-Clean  columns ( IBI  I~td, 
Cambridge,  England). 

A 538bp  fragment  of the P O M C  eDNA,  which 
included the f l -endorphin coding domain, was cloned 
into the plasmid vector p G E M 4  (Promega, Epsilon 
House,  Chilworth,  Research Centre, Southampton,  
England). The  plasmid was digested with EcoRI and 
the 3s S-labelled cRNA was transcribed by utilizing the 
T7  RNA polymerase p romotor  [6]. 

For both the L H R H  and P O M C  probes RNasc A 
and sense strand controls were included [1,6]. 

Pre~(vbridization and hybridization 

Anatomically and experimentally matched alternate 
slides were removed from storage at - 7 0 C  and 
allowed to stand at room temperature  for 10min,  
immediately followed by fixation in 4°o (w/v) 
paraformaldehyde in phosphate  buffer (0.1 mol/1; pH 
7.4), for 10 min. The  prehybridizat ion and hybridiz- 
ation buffers [6] contained 40% and 50':!; (v/v) de- 
ionized formamide for L H R H  and P O M C ,  
respectively. For  L H R H ,  the hybridization buffer con- 
tained 2 x 106 cpm/ml  35 S-labelled L H R H  oligonucle- 
otide probe. T h e  procedures for the L H R H  and 
P O M C  in situ were as described previously [1, 6]. 

Autoradiography 

Slides were dipped in Ilford K5 liquid photographic 
emulsion (Ilford Ltd,  Mobber ly ,  Knutsford ,  Cheshire, 
England) diluted 1:2 with distilled water and air dried 
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for 12-14 h in total darkness followed by exposure, in 
light-tight boxes containing desiccant, at 4°C for either 
21 days ( L H R H )  or 10 days (POMC).  Sections were 
developed (Ilford Phenisol diluted 1 + 4 with distilled 
water) for 3 rain, fixed (Ilford H y p a m  Fix diluted 1 + 4 
with distilled water) for 5min ,  lightly stained 
with haematoxylin and eosin and mounted  with D P X  
mountant .  

Detection of  m R N A  containing cells 

L H R H  m R N A  and P O M C  m R N A  containing cells 
were located, under  bright field illumination in an 
optical microscope,  in anatomically matched sections 
f rom experimentally (i.e. simultaneously processed) 
matched brains. 

Sections (from +8 .6  to +8 .2  [22]) containing 
L H R H  m R N A  were mapped  for total positive cell 
counts using a light microscope under  bright field 
illumination. Silver grain counts were carried out, with 
the aid of an A M S  Optomax V image analysis system, 
on single cells only where a nucleus was visible. T h e  
sample, consisting of equal numbers  (85-90) of  cells 
f rom matched pairs of  brains, was spread over 12 
sections. Within each section, cells were randomly and 
bilaterally selected. Background silver grain counts 
were determined as described previously [25]. 

Sections containing P O M C  m R N A  (from +6 .8  to 
+ 6.4 [22]) were counted for total positive cell counts 
using the A M S  Optomax V image analysis system. 
Positive cells (130-150) were silver grain counted as 
described for L H R H  m R N A  grain counting. 

R E S U L T S  

T h e  P M S G  treatment  was effective in all the 
animals used for the in situ hybridization studies, as 
assessed by substantial uterine enlargement in each rat, 
and a significant increase in plasma L H  concentrations. 
T h e  mean + SEM plasma L H  concentrations in the 
PMSG- t r ea t ed  animals was 25.4 + 7.9 and 
13.9 + 4.4 ng N I H - L H - S 1 8 / m l  (n = 10 per group) in 
saline- and prazosin-treated rats, respectively. In  ani- 
mals not treated with P M S G  the plasma L H  concen- 
trations were 1.7 + 0.1 ng N I H - L H - S 1 8 / m l  (n = 5) 
(data f rom ref. 9). The  large scatter in the present L H  
values is probably due to (i) the fact that for humane 
reasons trunk blood was taken under  sodium pentobar-  
bitone anaesthesia which is a powerful blocker of  L H  
release [26], and (ii) the fact that single L H  values were 
obtained at different times during the expected time of 
the L H  surge. 

There  was a significant decrease in numbers  of cells 
expressing L H R H  m R N A  in prazosin-treated animals 
when compared with matched saline-treated animals 
(Table 1; Fig. 1). However,  there was no significant 
between-group difference in the grain counts of L H R H  
m R N A  expressing cells (Table 1; Fig. 1). The  number  
of P O M C  m R N A  expressing cells was higher in pra- 
zosin- compared with saline-treated rats in each of 5 
out of 6 matched pairs (Table 1; Fig. 1). However,  in 
one pair (4e5), the cell counts were decreased in the 
prazosin-treated rat, even though the grain counts/ 
cell were higher in the prazosin- compared with the 

Table 1. The cell counts and silver grain counts per cell in PMSG-treated animals treated with either prazosin or saline 

Total  cell counts Mean grain counts 

% Change % Change 
L H R H  Saline Prazosin (Saline = 100%) Saline Prazosin (Saline = 100%) 

Pair 1 251 214 - 14.7 87.49 89.97 2.8 

Pair 2 432 353 - 18.3 83.85 71.78 - 14.4 
Pair 3 442 337 - 23.8 115.13 95.99 - 16.7 
Pair 4 218 171 - 21.6 95.16 95.35 0.20 

Pair 5 227 208 - 8.4 83.46 70.69 - 15.4 
Mean + SEM 3 1 4 + 5 1  2 5 7 + 3 7  - 1 7 + 3  9 3 + 6  85__+6 - 9 + 4  

P = 0.02 P = 0.05 NS NS 
(paired t-test)  (Wilcoxon signed-rank) (paired t-test)  (Wilcoxon signed-rank) 

P O M C  

Pair 1 1652 2008 21.5 
Pair 2 1354 1560 15.2 

Pair 3 1494 1904 27.4 
Pair 4 1898 2202 16.0 
Pair 5 2025 1656 - 28.3 
Pair 6 1540 1576 2.3 
Mean + SEM 1661 + 104 1818 ___ 107 9 + 8 

Mean + SEM 15 88+91  1850___125 17_+4 
(pair 5 excluded) 

All 6 pairs NS P = 0.025 

(paired t-test)  (Wilcoxon signed-rank) 
Pair 5 excl. P = 0.016 P = 0.05 

(paired t-test)  (Wilcoxon signed-rank) 

78.79 107.35 36.2 
78.34 104.77 33.7 

83.58 101.40 21.3 
78.23 85.20 8.9 
84.37 95.04 12.6 

76.58 80.32 4.9 
80-t-1 9 6 + 5  20__.5 

P = 0.014 P = 0.025 
(paired t-test)  (Wilcoxon signed-rank) 

NS = not significant. 

The data were collected from 5 pairs of experimentally-matched animals processed by in situ hybridization histochemistry for LHRH m R N A  
and 6 pairs of experimentally-matched animals processed by in situ hybridization histochemistry for POMC mRNA. 
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Fig. 1. In  s i t u  h y b r i d i z a t i o n  h i s t o c h e m i s t r y  showing  a u t o r a d i o g r a p h s  of  L H R H  m R N A  e x p r e s s i n g  n e u r o n a l  
cell bod ies  in the  p r e o p t i c  a r e a  o f  a m a t c h e d  p a i r  of  r a t s  t r e a t e d  wi th  e i the r  sal ine (A) or  p r a z o s i n  (B) and 
P O M C  m R N A  e x p r e s s i n g  cell bodies  in the  r o s t r a l  a r c u a t e  nuc leus  f r o m  a m a t c h e d  p a i r  of  r a t s  t r e a t e d  wi th  
e i the r  sa l ine  (C) o r  p r a z o s i n  (D). The  sec t ions  a r e  co rona l  and  the  t h i r d  c e r e b r a l  ven t r ic le  (3V) is s h o w n  fi)r 

o r i en t a t i on .  The  c a l i b r a t i o n  b a r  = 50 p m .  
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saline-treated rat in this pair. Means are, therefore, 
given with and without  pair 4~ 5 included; non-para-  
metric statistical analysis shows that in either case the 
cell counts were significantly greater in prazosin- com- 
pared with saline-treated rats, and paired t- test  shows 
a high level of  significance when pair 4~ 5 is exluded. In  
order to avoid a type 2 statistical error we infer, 
therefore, that prazosin t reatment  significantly in- 
creased the number  of P O M C  m R N A  cells in the 
rostral arcuate nucleus. T h e  silver grain counts in 
P O M C  m R N A  expressing cells were also significantly 
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increased in the prazosin- compared with the saline- 
treated animals (Table 1; Fig. 1). This  point is also 
illustrated by Fig. 2 which shows that the silver grain 
counts of  P O M C  m R N A  expressing cells of  a prazosin- 
treated animal showed a shift to the right compared 
with those in a matched saline-treated control animal. 
In  contrast, there was no difference in the distribution 
of silver grain counts of L H R H  m R N A  expressing cells 
in a prazosin-treated compared with a matched,  saline- 
treated animal (Fig. 2). Similar data were obtained for 
the other pairs of  animals. 
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Fig. 2. Frequency  dis tr ibut ion h i s togram of  s i lver  grain counts  of  L H R H  m R N A  e x p r e s s i n g  cells f r o m  a pair 
of  e x p e r i m e n t a l l y  m a t c h e d  a n i m a l s  and  for  c o m p a r i s o n  a distr ibut ion h i s togram of  s i lver  grain counts  of  

P O M C  m R N A  e x p r e s s i n g  cells f r o m  a m a t c h e d  pair of  a n i m a l s .  
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D I S C U S S I O N  

These  results show for the first t ime that cq blockade 
with prazosin increases the number  of P O M C  m R N A  
expressing cells and the concentrations of P O M C  
m R N A  per cell in the rostral arcuate nucleus. The  
results also confirm our prel iminary observations [20] 
that cq adrenergic blockade with prazosin significantly 
reduces the number  of hypothalamic cells which 
express L H R H  m R N A  in immature  rats treated with 
P M S G .  Our  findings on L H R H  m R N A  are similar to 
those in ovariectomized adult rats treated with estrogen 
[18] with the exception that in the latter (i) the percent-  
age reduction in the number  of  cells was greater than 
in the present  study and (ii) Weesner  et al. [18, 27] also 
found that ~ blockade significantly decreased the con- 
centration of L H R H  m R N A  as assessed by grain 
counts/cell. T h e  reason for this difference may be that 
in the study by Weesner  et al [18, 27], in which 
prazosin was administered by hypothalamic implant,  
hypothalamic neurons may have been exposed to con- 
centrations of  prazosin which were higher than those in 
the present  study, in which prazosin was administered 
i.p. However,  although our L H  data must  be inter- 
preted cautiously for reasons outlined in the Results 
(they are based on measurements  in single samples 
taken from animals anaesthetized with sodium pento- 
barbitone) they do show that prazosin attenuated the 
P M S G - i n d u c e d  L H  surge. Lower  dosages of prazosin 
than those used here, also administered systemically, 
blocked the pulsatile L H R H  release in the rhesus 
monkey [28] and surge, but not basal, L H  release in 
conscious adult female rats [19]. 

It  is, of course, possible that the effects of  ~ adren- 
ergic blockade on L H R H  m R N A  and P O M C  m R N A  
expressing cells are functionally unrelated. However,  
these findings provide further support  for the view that 
endogenous opioids play a key role in controlling the 
biosynthesis and release of L H R H  [3, 6, 29] and that 
several different pathways,  possibly multisynaptic,  may 
be involved in E 2 stimulation of L H R H  biosynthesis 
and release [3, 29]. Tha t  is, E: stimulation of L H R H  
m R N A  biosynthesis may involve (i) cq adrenergic- 
dependent  stimulation of L H R H  neurons and/or (ii) 
disinhibition of L H R H  neurons consequent on cq 
adrenergic-dependent  inhibition of P O M C  neurons 
which, in the absence of high E 2 levels, normally inhibit 
L H R H  biosynthesis and release. In addition to the :q 
adrenoreceptor  mechanisms outlined above, we have 
recently shown that a 5 - H T 2  receptor mechanism also 
plays a crucial role in st imulating L H ,  and presumably  
L H R H  release [ 19]. The  results of  these pharmacologi-  
cal and in situ hybridization studies are supported by 
immunocytochemical  data. Thus ,  for example, (i) there 
is a dense concentration of ~ adrenergic receptors in 
the medial hypothalamus [30] and (ii) double im- 
munostaining for L H R H  and either dopamine-f l -  
hydroxylase (DBH) (for adrenergic neurons) or 5 - H T  

showed that there is a close proximity between IA t R t{ 
cell bodies and D B H  and 5-HT-conta in ing  nerve 
terminals and between L H R H  and 5 - H T  nerve fibres 
[14]. Ultrastructural  and lesion studies suggest that 
L H R H  neurons are innervated by P O M C  and dopa-- 
minergic, but not noradrenergic,  neurons {4, 15]. Nor- 
adrenergic neurons could exert their effects on I~HRH 
neurons by GABA in addition to P O M C  neurons  
Glutamic acid decarboxylase (GAD) containing n e u r  
ons (presumably GABA neurons) receive projections 
from putative noradrenergic fibres and could bv way of 
their terminals on L H R H  neurons mediate the action 
of noradrenergic neurons [15]. Data obtained l?om 
push-pul l  cannula [31] or intracerebral infusion [32i 
techniques suggest that E,- induced inhibition of 
GABA release may result in disinhibition of I . H R H  
neurons. Whether  this is due to a direct action of E 
on GABA neurons or E2-induced noradrenergic 
inhibition of GABA neurons [151, or both, remains t,~ 
be determined. 

The  inferences drawn from the in situ hybridization 
studies assume that changes in peptide m R N A  levels 
are always reflected by changes, in the same direction, 
in peptide release. This  is certainly the case for I . H R H  
[1] and also seems likely for POMC/f l -endorphin .  As 
assessed by the measurement  of  f i -endorphin release 
into hypophysial  portal vessel blood, which pre- 
sumably reflects f l -endorphin release from nerve termi- 
nals in the median eminence, the data of Sarkar and 
Yen [33] suggest that, in the rat, L H R H  and/i-cndor--  
phin release are inversely related, consistent with the 
notion that decreased f i -endorphin release permits the 
surge release of  L H R H .  But, this finding was not 
confirmed by other studies in the rat [34] or rhesus 
monkey [35, 36], although our studies in the rat did 
show a decline in f l -endorphin release during the 
afternoon of proestrus [34]. The  latter is correlated 
with a significant decrease in the tissue concentrations 
of f l -endorphin in the M P O A  and arcuate nucleus [37] 
and suggests that "overf low" of peptide (f i-endorphin ~ 
into hypophysial  portal vessel blood does reflect the 
pat tern of f l -endorphin release at synapses on L H R H  
cell bodies or at axo-axonal contacts in the median 
eminence. 

The  present  studies do not, of course, exclude the 
involvement of other neurotransmit ter  systems in the 
E2 stimulation of L H R H  release. Galanin, for example, 
has been implicated because it is co-localized with 
L H R H  [38] and its concentration in the median emi- 
nence and anterior pituitary gland is significantly in- 
creased by P M S G - i n d u c e d  E2 secretion [39]. However,  
prazosin, while reducing the E2-stimulated increase in 
L H R H  m R N A ,  had no effect on galanin m R N A  
concentrations [27]. 

In summary  our data show importantly that, in the 
prepuberta l  female rat, an ~1 adrenoreceptor  mechan-  
ism is involved in mediat ing the E2 inhibition of P O M C  
m R N A  synthesis as well as in the E~ stimulation ot  
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L H R H  m R N A  s y n t h e s i s .  T a k e n  t o g e t h e r  w i t h  d a t a  in  

t h e  a d u l t  ra t ,  t h e  r e d u c e d  c o n c e n t r a t i o n s  o f  P O M C  

m R N A  m a y  r e s u l t  in  r e d u c e d  f l - e n d o r p h i n  r e l ea se  at  

s y n a p s e s  o n  L H R H  cel l  b o d i e s  or  n e r v e  t e r m i n a l s  

r e s u l t i n g  in  t h e  d i s i n h i b i t i o n  o f  L H R H  n e u r o n s .  T h i s  

is o n e  o f  s eve ra l  m e c h a n i s m s  b y  w h i c h  E2, in  i ts  

p o s i t i v e  f e e d b a c k  m o d e ,  c o u l d  s t i m u l a t e  L H R H  

m R N A  s y n t h e s i s  a n d  L H R H  re lease .  
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